AI在识别疾病方面堪比放射科医生 通过x光精确识别肺炎和肺衰竭

  • 2022-09-26 00:00
  • 来源:医药资讯网
  • 阅读:143

来源:生物探索2022-09-26 09336024

目前,大多数诊断疾病的AI模型都是基于人类标记图像通过机器学习进行训练的。为了使模型以合理的性能预测某种病理,在训练期间必须为该病理提供大量由专家标记的训练样本。

目前,大多数疾病的AI模型都是基于人类标记图像通过机器学习进行训练的。为了使模型以合理的性能预测某种病理,在训练期间必须为该病理提供大量由专家标记的训练样本。这种获得一些病理的高质量注释的过程是昂贵且耗时的,这通常导致临床工作流程的大规模低效。

一个名为CheXzero的新算法模型诞生了!它可以从现有的医疗检查报告中独立学习,这些报告是由研究人员用自然语言处理(NLP)编写的。相关研究成果发表在《自然生物医学工程》杂志上,题为《通过自我监督学习从未标注的胸部X射线图像中进行病理的专家级检测》(图1)。

图1研究结果(来源:[1])

研究表明,在涉及医学图像解释的任务中,经过适当训练的机器学习模型通常会超过医学专家的表现。然而,如此高水平的性能通常需要使用由专家仔细注释的相关数据集来训练模型。研究表明,该模型可以在没有明确标注的情况下,自我监督模型对胸部x光图像执行病理分类任务,其准确率与放射科医生相当。在胸部x光片的外部验证数据集上,自监测模型在检测三种病理(总共八种)方面优于全监测模型,并且其性能被扩展到模型未明确注释的病理、各种图像解释任务和来自多个机构的数据集。通过AI模型理解医学影像,可以大大节省时间和资金成本。

哈佛医学院的一组研究人员用公开的数据集训练了CheXzero模型,该数据集包含超过37.7万张胸部x光片和超过22.7万份相应的临床报告。研究人员通过使用来自两个不同机构和另一个国家的不相关数据集来测试CheXzero的性能,以验证该模型可以将图像与相应的报告进行匹配,即使报告包含不同的术语。

研究发现:


八宝山殡葬服务