复旦大学颜波团队在Nature Methods在线发表题为 Pretraining a foundation model for generalizable fluorescence microscopy-based image restoration 的研究论文,该研究提出了一种基于荧光显微镜的通用图像恢复(UniFMIR)模型来解决不同的恢复问题,并表明UniFMIR具有更高的图像恢复精度,更好的泛化和更多的通用性。
五项任务和14个数据集的演示,涵盖了广泛的显微镜成像模式和生物样本,表明预训练的UniFMIR可以通过微调有效地将知识转移到特定情况,揭示清晰的纳米级生物分子结构,并促进高质量的成像。这项工作有可能激发和触发基于荧光显微镜的图像恢复的新研究亮点。