Nature Methods:从胚胎发育到疾病解析:FlowSig引领细胞间信号流动研究新方向

  • 2024-09-01 00:00
  • 来源:医药资讯网
  • 阅读:12

细胞间通信是维持生物体内稳态以及实现复杂生物过程的核心机制之一。细胞通过分泌和接收化学信号,与周围的细胞进行交流,从而协调发育、反应、组织修复等关键生理过程。近年来,单细胞RNA测序(single-cell RNA sequencing, scRNA-seq)和空间转录组学(spatial transcriptomics, ST)技术的发展,为研究者提供了在单细胞水平上解析细胞间通信的前所未有的机会。这些技术能够同时检测成千上万个基因的表达,生成具有高维度的基因表达模式,从中提取与疾病状态、空间位置和时间轴相关的特定基因模块。然而,如何有效整合这些高维度数据,并在此基础上推断出驱动生物过程的细胞间通信流,仍然是一个重大的挑战。

在这个背景下,8月26日Nature Methods的研究报道 Inferring pattern-driving intercellular flows from single-cell and spatial transcriptomics ,提出了FlowSig这一新方法,用于从scRNA-seq和ST数据中推断由细胞间通信驱动的信息流。FlowSig基于图形因果建模和条件独立性测试,通过构建和学习部分定向无环图(completed partial directed acyclic graph, CPDAG),揭示了细胞间通信的方向性依赖关系。不同于传统的基因表达模块(gene expression modules, GEMs)构建方法,FlowSig能够同时考虑细胞间信号(ligand-receptor interactions)和细胞内调控机制,从而准确捕捉细胞间流动的时空动态。

该方法的开发旨在填补现有工具的空白,并提供更为全面的分析框架。通过在多种实验数据上的验证,如胰岛细胞受刺激后、不同严重程度下的细胞间流动以及小鼠胚胎发育过程中形态发生素驱动的模式,FlowSig展现出了优异的性能。研究者通过这些应用,展示了FlowSig在捕捉复杂生物过程中的关键细胞间通信流方面的潜力,为进一步理解健康和疾病状态下的生物过程提供了重要的工具和视角。

在未来,随着单细胞和空间转录组数据的积累,FlowSig有望成为推动因果推断和因果结构学习的关键方法之一,并在生命科学研究中发挥更大的作用。


八宝山殡葬服务