RNA分子作为生命活动的重要组成部分,其结构的多样性和动态性对功能的实现至关重要。然而,RNA分子的高异质性和柔性使得解析其三维结构成为一个长期未解决的挑战。传统方法如核磁共振(NMR)、X射线晶体学和冷冻电镜(cryo-EM)虽然在解析稳定RNA结构上卓有成效,但面对具有多种构象的动态RNA分子时,却往往力不从心。随着RNA研究的快速发展以及RNA在生物医学领域的广泛应用,例如RNA靶向药物开发和合成生物学设计,对能够全面解析RNA复杂结构的技术需求愈发迫切。
在此背景下,研究人员开发出一种名为HORNET的新方法(Holistic RNA Structure Determination),结合了原子力显微镜(AFM)和深度神经网络(DNN)的优势,首次实现了在溶液环境下对单分子RNA多构象的直接可视化和结构解析。通过利用AFM的高信噪比和DNN的学习能力,HORNET不仅能够识别RNA分子在不同构象下的全局拓扑信息,还能以原子分辨率预测其三维结构。与传统方法依赖信号平均不同,HORNET可以捕捉RNA分子的异质性,这一特点尤其适用于研究大分子RNA的动态变化。(12月18日Nature Determining structures of RNA conformers using AFM and deep neural networks )
这一创新技术的问世,为RNA结构生物学提供了一种突破性的工具。例如,研究人员成功解析了RNase P RNA和HIV-1 Rev响应元件RNA(RRE RNA)等多种RNA分子的异质性结构,揭示了这些分子在生理条件下的动态构象及其对功能的贡献。这一研究不仅深化了我们对RNA分子结构与功能关系的理解,也为开发基于RNA的创新药物和生物技术应用铺平了道路。
HORNET方法的独特之处在于其整合了AFM的精确拓扑信息和机器学习的强大预测能力,为长期困扰科学界的RNA异质性结构研究提供了新的解决方案。